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Multigrid Applied to iSingular ozPerturbation Problems ,,.,"-:

The solution of the singular perturbation problem P

-Eu + b(X)u' = , 0 < x < 1, .

with

1 >> 6 > 0, (0) = (o, () = U, %.

by a multigrid algorithm is considered. Theoretical and experimental results for a number of

different discretizations are presented. The theoretical and observed rates agree with the results".,°

developed in an earlier work of Karnowitz and Parter.

In addition, the rate of convergence of the algorithm when the coarse grid operator is the "-'

natural finite difference analogue of the fine grid operator is presented. This is in contrast to I¢%

the case in the previous work where the Galerkin choice (11 Lhqh was used for the coarse grid""/-.

operators.,
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1 Introduction

This report discusses the application of a multigrid algorithm to the solution of the following one

dimensional singular perturbation problem:

- eu" + b(x)u'-f, 0<z<1 (1) -

with
I >> > 0, :(O U0 U(1) U

Many other authors have discussed the application of various methods of solution to the alge- .

braic problem; in particular see Dorr jDorr70a], Babuska [Babu69a], Ervin and Layton [Ervi85a],

and Kellogg and Tsan [Kel178a].

Much of the literature regarding multigrid methods restricts itself to the solution of nice prob-

lems. Indeed most authors require that the linear system be well conditioned in addition to symmet- .

ric and positive definite. However, in the case of singular perturbation problems as the coefficient of

the second order term tends to zero the usual symmetric discretization fails to be of positive type.

Thus the first measure taken in the numerical discretization of these problems is to replace the usual "+*."€.

symmetric difference of the first order term with some form of skewed differencing. In particular

for problems with turning points this may lead to a system of equations which is ill-conditioned

for small E.

From the standpoint of calculating a numerical approximation to the solution of problem (1)

the first question is: does the discretization converge to the continuous solution? Then, assuming

it does, how does the multigrid algorithm perform as a solver for this system of linear equations?

What modifications, if any, are necessary in the multigrid algorithm?

The main result shows that if the original system of equations resulting from the discretization

of problem (1) is of positive type then the theoretical results for the multigrid algorithm developed

in Kamowitz and Parter [Kamo85a] and in McCormick and Ruge [McCo82a] apply.

From a computational perspective it is convenient to use for the coarse grid operators of the ,k

multigrid algorithm the operators that are the finite difference analogue of the original operator.
o

In Section 6 the rate of convergence of the algorithm using the finite difference version of the coarse

grid operators is considered. It is shown that the new rate of convergence is an 0(h2 ) perturbation %

of the rate obtained using the Galerkin choice.

%
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2 The Discrete Problem

Three model problems are chosen for study, one where the sign of b(x) does not change and two

where b(x) changes sign. The three problems are designated

Pro blem BL

Lu --u" + u' , 0 < x <1 (2)

Problem TP-1

Lu-E+u"+(x- )u,0, 0< x <1 (3) .
2

Problem TP-2

L1 -" (x - -)u 0 0 < x < (4)

2

For all three problems the boundary conditions are

u(0) 1, u(1) 3.

For the discrete problem as usual let N > 0 be chosen and set h 1/(N + 1). The interval

0 (0,1)

is discretized to form

f2h {ih :1 <i< N}.

The notation xi refers to the point ih and ui refers to u(xz). In addition the usual notation for -

finite differences is used:

D+ui Ui+l h i D hui

U+I - IUi - 2uj + u~j
2h 

h2•

For problem (BL) the following two discretizations are considered:

Llu, : -ED, Du, -+ D-uj (upwind differencing)

L 2h D+Du- h D2u (see Kellogg and Tsan).1 4-42

2
-,.0



Since problems (TP-1) and (TP-2) have turning points at x = .it is necessary to change the

direction of the discretization of the first order term. For problem (TP-1) the discretization tested

is

L~ui D -ui- X - 1 ) D+ui I< i< N + 1(5
h2 " 2()

L~u -D+ -u + xi- )D2i +1i < i< N. (6)

Similarly, for problem (TP-2) the discretization is%

L j - eD+D.ui- (x - ) D-ui, I < < N+1(7)

2

L~, -eD+D-ui- (xi - 1) D+ u, N- + 1 < i< N. (8)

.

Note that each of the discretizations L k, kI= 1,... ,4 results in a tridiagonal linear system of

equations whose coefficient matrix may be denoted by

with

cq 0O, 'yj 0, and /i akt+ ji.

Thus each L, Ick 1,... 4 is an M-matrix and the linear system of equations

U0 and tLN+1 fixed has a solution; see for example Berman and Plemmons [Berm79a].

3 Review of the Multigrid Algorithm

The particular multigrid algorithm used to solve (1) has been discussed in detail in Kamnowitz and

Parter [Karno8a]; thus only a cursory review is given here. In particular the details of the theory

behind the convergence results can be found there. What is important to realize is that although

the algorithm and convergence results discussed in the previous work apply to well conditioned two

point boundary value problems the saiiie bounds on the rate of convergence apply to the singular

perturb~at ion prolbleriis dliscussed here.

In order to (oroplet ely dlescrib~e the algorithm a numrber of spaces and operators need to be

deti1ned I-')r Ow II ir j 4~(j()-O ( g niest(( grIld

h 112h * *
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WA '

where

P

Denote by Skh the space of grid functions defined on 1 2
kh From now on the notation kh will be

replaced by k. Denote by Gk the smoother, Ik+ 1 the restriction map, and I4 the interpolation

map. Associated with each space Sk there is also a nonsingular tridiagonal operator

Lk Sk Sk,

where Lk is of positive type. The operators Lk are again denoted

L"

These operators will be formally defined after the statement of the algorithm. ."

The following is an outline of the algorithm used. Assuming Ur' is the nth approximation to

the solution of the system of equations

LIUI = F1

algorithm MG(U', LM, FM, k) returns U"" , the next iteration of the multigrid algorithm. The grid

layer is denoted by k; set k = 1 to start the algorithm on the finest grid layer.

Algorithm MG(U', L, F', k)
1. Coarse Solve: If k g (coarsest grid) then return

AfG -- L9 F,
otherwise

2. Sniooth: Apply the smoother, GM, call the result of this step Uk. .

If k I use U" as the initial guess, otherwise use 0.
3. Recursively Apply the Algorithm: SetU _CT  I U G (O, L k ,,1kil - L k "), k + I).

4. (optional) Stiooth Agai: SetG
5. Return: Set MG -- Un+1.

As defined algorithm MG is called a symmetric V-cycle if step 4 is used; otherwise algorithm -*.i .*

MG is referred to as a slash cycle (following the notation of McCormick and Ruge).

For the smoother, G, choose rn--applications of damped Jacobi iteration with parameter a.

Formally, repeat for I < r < rn

The interpolation operator. i , is defined as follows. For points common to f2k I and to .k

set 5

*1 .'.,...--.
. . .'

k. f I



and at odd (new) points of Lik require

This results in the explicit system of equations at the point x2j_ 1

1 [k ,2 Uk+1 + k _k+
k+~. -1 3 ylyl+12~u+

The restriction operator, Ik , is

I Uk 2 2 k +1-"1

Note that if Lk is symmetric then "-..

k k+1,A *

A fundamental observation due to McCormick and Ruge [McCo82a] in the symmetric case is that 4.-Pe :.-t
S can be written,-..,

Sc = Range Ik+j (D Nullspace Ik+'Lk. (9)

For non-symmetric problems the above decomposition follows directly from the characterization of
R k and NuIts'ace Ik+ILc see Kamowitz and Parter.

Finally the coarse grid operators, Lk+I, are chosen by setting %

Lk+1 = Lk+1 Ik+'LkIkk k+1,,.

A direct computation shows that --%

3k+l k+1  ,
Lk+1 -k -% A .

with

2 k 
(10)'

2j-1

tkk k a k -n

jk+1 I k -
0

2 2j- 1 2j(1) "

k+ 1 M (12)&
2) 1

Note that the choice of Lk I is the 'natural' choice; however it is not the only feasible choice for 'W_,

Lk±-.

.~~~~....- - - --. '. . o - . .. %,-%_ .%%. % %' %. %. "A " ' - .' * ,% %

' oA.e"
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3.1 Convergence Theory ,

For completeness some results from IKamo85a are repeated.

Let 0/P

,£n _-. Vtrue - V
n

be the error in the nth iterate. Here Utrue corresponds to the true solution of the algebraic problem

LhUtrue f.

The rate of improvement of the nth iterate of algorithm MG is then

To estimate p, the asymptotic rate as n -- o, one needs to bound the p".

For later use define

IXHI', (Lhx, X) ZLhX)j.j

First the two grid process is considered. Given an initial error .

d'-"4 -

0 .Utrue - U O  
...r4.'

the two grid process yields:

1. Smoothing 
" 4"4

C0  io G'cO

where G' corresponds to the linear part of the smoother G. Note that from (9)

~-r7+I+ 2[hW2h

where

77 S Nullspace IhLh and W2h C S2h.

2. Restricting the residual rh = Lhio to f22h yields

[ h 2h iO [2hhr t-2h2h h W 2h h...

f?2h - ~L L h, + 'h LhIhh~ Ih~t12h h h h2 h h Lh2hWh""'

since

rj C Nullspace lhLh 
.

6
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3. Computing the coarse grid correction directly (as is the case for the two grid algorithm) is

equivalent to solving

L2hiPh 2 h L2hW2h.

Here

L2h L2h I~Lh 2h

so

0~2h =- W2h-

4. Finally, correcting ZO using the coarse grid correction yields d1 :
% r

E1  Utrue U1

t,', _(CO + h~
Utre -~L}± 2hO2h)

= -O I~/2h

? 7- ~hW2h - 2hOk2h

Note that if

Zc G Svh

then one step of the two grid procedure solves the problem! In general, since JIG'II < 1 the rate p1

satisfies

In this case

277

so -. V

Notice that the 77 term is related to the action of the smoother while the Ih W2h term is eliminated

by the multigrid process itself.

In Kamnowitz and Barter [KanoS~aj an explicit decomnposition of Sh was fouind in terms of the

cigenvalues and cigerivectors of thie damrped Jacobi schemne. This decomiposition was exploited to

compute hounds on the rate of convergence.

For the two grid scheme, the hounds on p, for a given Yn and a, are givenT in Table 1. Note that

7

. e - .e ". -- n . . . . .
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.333 ' .500 667 1I.00 1.333

1 .500 .333 .400 .429 .500 .572 "

2 .250 .111 .160 .184 .250 .3261

3 .125 .078 .088 .093 .125 .187
4 .068 .062 .068 .072 .083 .109-

Table 1: Predicted Rates for 2 Grids

.333 .500 .667 1.750 11.00 11333
1 .633 .577 .561 .561 .577 .614

.435 .408 .417 .424 .447 .475

.336 .335 .349 .357 .378 .403 %

4 .283 .293 .307 .314 .333 357

Table 2: Predicted Asymptotic Rate

the optimal rate is obtained for a = .5. In the succeeding sections the bound in the a .5 case will

be obtained experimentally for problems (BL), (TP-1), and (TP-2).

In the case where the number of grids is arbitrary, estimates based on the ideas in 1McCo82a)

are given in Table 2. As indicated in [Karno85a these bounds are not sharp.

4 The Singular Perturbation Case

For the study of singular perturbation problems it is necessary that if Lh is an M-m,- rix then the

coarse grid operators Lk 1, k 1,2,... are also M-matrices. This is necessary to insure that each

subproblem'

Lkl±bki - fk+l

is solvable. In particular since the snoother Gk++ depends on Ltkl, then if Lk+1 is an M--matrix,

jGk+IK < I. .4'.

Lenuiia 4.1 If

Lk 0 k k k

is an Af-Alatrix then

L1k~i I or~ k~

is also an 11-matrir, where (Yk i, j i and _k 1 arc given by equations (10 1.).

, , ar irn y +u tin ( (11 ). :8.
S....



% %

Proof: The hypotheses that Lk Is an M-matrix insures that

so ak1and -yk1are also positive. In addition, k+1 must satisfy N

•,,' LIP

,3-,l> ak+ + ^ +

%

Precalin The eyprtessios foat , i and M-ari n es ths iseuiaet orqurn

k k k k k k k k_0

ok 2 jY 21 . _ 2 jQ'2 j+ I 2jC'2j-1 -12j'l2j 1

Y) >0, k3 > , +nq ok0s .€:

2j- 1 2j+ 1 0 1 2k,+1

or,

Oo 
k

2j-12jt-1

which follows directly from the fact, that Lk is diagonally dominant.

Since each of the Lk -i is an M-nmatrix, the theory developed in Section 3.1 can be applied in

the singular perturhation eCase.

5 Experimental Results

The algorithm of the previous sections was applied to problems (BL), (TP-1) and (TP-2). Prob-

lem (IlL) exhibits a boundary layer at x = 1. From a computational point of view the system of

linear equations that is solved is well conditioned even for small E; however the fact that the linear

system is riot symrrietric leads to computational difliculties in computing the experimental rate of

convergen ce.

III the case of pr I ulen (7')- 1) there are two boundary layers; at, x - 0 and at x 1. In addition

the systemri of eqilationIs that is solvcd is III conditioned.

The discrete proilehii ,'rresp(,in( g to probleni (7TB- ) is well conditioned. The fact that there

is an interior turning point at r 1 '2 does not appear to lead to computational diticulties.

By using the one sided difhretwe sche.mes discussed iII the previons section the linear systems ,

arising from the dtiscretization of tle problems are of positive type.

From a pract ical st aridpoint, however, what (fFct does the ill comolit ioning have on t lie observed

solution?': In particular, how shiould the rate of convergence (reduiction In the error) he measured?

%" %* %1
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5.1 General Remarks Regarding the Experiments

'%

In all the experiments N, the number of points on the fine grid, was 63. The initial guess, U", was .

constructed so that the initial error could be chosen in advance. In other words,

° = u(x) -fj.

For the experiments discussed here

( i1;

The number of smoothing steps for the experiments discussed here was set to one. Elxperi-

ments were run where the number of smoothing steps was greater than one. When more than one

smoothing step was used there was no observed qualitative difference in the behavior of the algo-

rithm compared to the behavior for non-singular perturbation problems. Unless otherwise noted-

the results are for the two grid case. The computer used was a VAX-1I/780 and the tests were run

in double precision (roughly 16 decimal digits of accuracy).-"

The damped Jacobi parameter, a, was chosen to be .5. The following heuristic argument due

to Brandt jBrar177a suggests why a .5 is optimal for one smoothing step. Ills suggestion is .

to choose a so that the range of eigenvalues which are reduced by the damped Jacobi process is

equal to the range which is left alone by the process. As noted in [Kamo85al the eigenvalues of the •

damped Jacobi scheme come in pairs A(p) and )(,i) where

o"--a arid
A(p) -t- a1+

I + a 1a

and ji are the igenvalues of the scheme for a r 0. The eigenvalues it are real arid distinct and as

h 0 they fill out the interval [0, 11. Brandt's requirement corresponds to choosing a so that

A(-1) A(0)

or in other words to taking a 1/2. Note that this is equivalenit to requiring,.

Indeed in [ KaniO85a] for I smoothing stp the theoretical and experimental results indicate that

this choice of a is opt iia. 0

5.2 Resnlts for the Boundary Layer 1-ro)tlni .-

For prlehm (I?!.) t lie oltiri to the arialytic problhem can he .,iilated explicitly. For all F 0 -'

,iz (.) ( X ii
*'  . ( . ' ' '

1 ()

[:: : , ", ' : : .-. . .- " . .- " -'. * ... .. .v. .. ... .. . .'.: -, : 4 , .- - -' ..: -., .' , -- : , , ;



. %

Grid 1 .1 .01 .005 .003 .001 1 0I___ _____ I L L 1t O
1 .62 x10 -  .11 X10 - 2  X5 xl0 - 2 •73 1l0- 2  X8 1l0- 2  •1 02 -,%

1 77io~ 7i o~~7.54~ .73 .86 Yf~T .011 .012
2 .25 xlO ..45 xlO 2  .18 xlO-1  .21 x10-  .28 x10-  .027 .024
3 .98 x10- 2  .12 xlO- ' .37 xlO- 1 .44 x10 - 1  .46 x10 - 1  .048 .048 %
4 .39 xlO- 1  .41 xIO- 1  .80 x10- ' .92 x10 - 1  .96 x10- 1  .099 .1 %-%

5 .15 .15 .19 .20 .21 .21 .21
6 1 1 1 1 1 1 1

Table 3: Condition Number - Problem BL e.

The constants C, and C2 satisfy 0

C1 2 C2= 1 -C el/k- 1

Note that

lI m C, 0, lim C2 =1-."--

so

lim ue(x) 1.

Denote by Uh,(x) the numerical solution of problem (BL) for a fixed h and E. The consistency

condition on the solution then requires that for fixed E

IlIM Uh (X) U, u (X). ;'
h-O

Dorr [Dorr70a] proved that for fixed h .' ..*

lim Uh,e(x) -1.

The discretization of problem (BL) using L' (standard upwind differencing) results in an ap-

proximation to the true solution which is an O(h) approximation. To improve on this approximation .-. "

Kellogg and Tsan point out that the use of L results in an O(h2 ) approximation for E > 0. For.

the reduced problem (E = 0) L' gives an O(h) approximation. ,

It is important to note that the linear system of equations arising from the discretization of S

Problem (BL) is not ill- conditioned. Table :3 displays the UNPACK I)ong79a] estimate RCOND

(an estimate of the inverse of the condition number) for L, h -- 1/64 and E = 1, .01, .005, .003,

and .001. ,',%,,.., -

First, some general conclusions about the experimental results. For both 14 and L2 the al- _

gorithn converged to tHe solution of the algebraic problem with an asymptotic convergence rate

S

S, d" . ' ............... ........ ¢..-. . .'. . .. . . . . . . . ............. ... . . " % .-. . .. .. .. . . . ... . . . -. • . -.



identical to the rate predicted in Section 3.1. Moreover there was no observed qualitative difference

in the behavior of the algorithm wiith respect to the choice of L or L . However, as - 0 the

behavior of the iterates changes dramatically.

Define

where

r- F - LhU'

is the residual after the nth iteration and the norm used is the 12 norm. From a computational

point of view this is a convenient measure of the rate of improvement since one does not know the

true solution. From past computational experience this ratio is bounded above by the theoretical

error reduction rate. Indeed for large E, say c = 1, this is the case. For small E, say E = .001, after

a small number of iterations R, exceeded the rate predicted in Table 1, and then as n increased R, P J

declined towards the predicted rate; see the solid line in Figure 1. The dashed line will be referred

to later. In both cases two grids are used.

An explanation for this behavior is that as the algorithm proceeds the fact that the error is

being measured in an asymmetric norm causes problems. The user of the algorithm should be

careful to note that while in principle all norms on finite dimensional spaces are equivalent the use

of a symmetric norm results in much better observed behavior of this particular algorithm.

To demonstrate this hypothesis the problem

LhU = F P .r

is transformed into the equivalent symmetric problem

D 'LhD(D-U) --DF '. (13)

The matrix D is a positive diagonal matrix whose entries are given by ".-

I- i

Applying tils t ransformrxation to Lh rcstilts in L'." which is now svirymmetric. The matrix L-' is

denoted"

Denote by algorith Al(; " algrithin \l(; appli(d to )rol)l('lm 13). ''he error resulting from

applying algorithl in ,l(; is rela ,( t e t rr,)r frmn applyingg algoritl in A ; as follows:

12 1
% .. . ~ . . . . -. - . . . . . ... . . . . . . -.-.:,. .. . .- , , ....-.- , .... -. .- -- , . .. -... ...- -.- -- - . -...- ° . -..- ..-. -*,,



Rate of Convergence
1.00.... 

.

0.90..............................................................

0.60 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~S . .......................................

0.50 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .." . ........................... .........

0.40 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .*. . ......................................

0.30 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~. -~ --------------

0.00

16 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91
Iteration

Figure 1: R,,, for e .D00K

13
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Lernma 5.1 If 0 is the error after the nth iteration of applying algorithm MG then the new error,

0+1, is related to the error in the symmetric problem by

(MG')(De) D-MGe D-l : + . %

Proof: By the definition of 0,
n =U -U1 - /

and-

, n +1 U - Un +  = MGe".
0

Also,

D-' n = D- 1 U - D-1 Un.

Applying each step of algorithm MG' to D-U n results in D-U" + ' as a straightforward calcula-

tion shows. Hence

MG 3 D-Iu - D-'AMG U.

Applying this transformation to the error En and computing the rates

ID-IR, IID-1 , 1H Lhn-1

results in the more usual behavior displayed by the dashed line in Figure 1. Figure 2 displays the

location where the maximum norm of the error is taken on versus the iteration number. Notice r.-%,

how as the iteration proceeds the location where the maximum occurs 'drifts.' Applying D and

then measuring [, has the effect of 'fixing' the location where the maximum error is taken on.

Unfortunately the entries of the transformation matrix D satisfy

D, - oo "*

as E - 0 so this is riot, a stable niethod for solving this problem in general.

In summary, for problem (2) where the coefficient matrix was not poorly conditioned but was

non-symmetric the only computational difficulty was in choosing the norm in which to measure

the rate of improvement of the algorithm.

5.3 Turning point Problem - 1

In this section consider the solution of

EUj (X )1 0,t (14)
2

14'
4 " J'.

,. .-
14 ." -"0

__ *.'r,*,-.*.



e. %

1.00 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ i . .......................................
NUMN

0.90 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ................... .....................

1 .80 . ............... ...................... .

0 .7 .......................................................

0 .6 0 . . .... ... .... ... .. .... ... .... ... .... ... ... .... ... .... ... ...

0.2~0. .... . ................................... 4 K

0 510 1520 2530 3540 45 505560 6570 7580 8590
Iteration

Figure 2: Index of Maximum Error, Problem BL -
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Grid~~~. A 01.I(5 ())

~1 .000J23 .00032 .20 X 10-'7 .19 x 10-' 7 1 7T X - T1 I7T0_TN
2 .0023 .0013 .76 x 10-C .66 X 0 .1 x -'0 12 1 x) lo 115

3 .0096 .0085 .83 x 10 -2 .85 x 10 2 .8o X 10. .60) X 1 2

4 .038 .037 .46 X 10- .55 X101 ' .6o X 10-1 .65 x 10 1
5 .15 .1416 .16 .17 .18 .19
6 1 1 1 1

'Fabl 1e 4: Condition N umber P 1roblemn TP- 1

with

TIhis Problemi Icis , boundriary Liyers, at, x 0 arid] at X*- 'Fi'le asyrpltit ic s(du1tiori Satisfies

(sKe1\i74a' arid D)orr70a'a)

urn u,(x) -- 2. *-

For thre d iscret e proeme again)

L'311 (15)

is solved where L: is given by equations (5) arnd (6) . Tihe cond(1itin nrruber of 1 tenids to in frnitv as

6 0 for a fixed /. 'Table .1 displays tire LI NP1ACK estimate RC()NDI for I r I 3 nd ~ 1

.01, .005, .003, arrd .001. It., Ismirportanrt to note that althourrghr tire operator corresponding to tie

original di1sirutiz'atiori orr ire( h grild Is IlI cond~itioned(, Lk., k 3, 1,.are niot Ill coridit ilolled, IIn

fact IIr tie hun11tig casc where tire coarse griu has lir poirnt tire' Systemr of (equat ions to ibe solvedI is

a I X I 'Systemr willch hlas ciirrdit imi nriniir 1. This feature (if tre rrrrltigridl algorithrri is reassuring

to tire riser srice it rrreans that tire actual systemi binrg solived (directly Inn step) I nif algorrithmru AIG ;

is well coinrditioined and~ rio special mreasrrres lived~ to bie taken.

Although tie coarse grids ursed Ii tire algoritin doi riot, resoilve thle bourndary' layers the algorrithrrr

still converges. 'Ibis is; becaurse tire role of tire coarse grids is to solve frir ire( erriir i tire solrution .

rather thtan to relpres'rit theu solirtioin Itself. Tire borurdary layers are riot, sen Ii thle expressionr for

thre error. Thel( obiservedl rate (if co(irvergerice was I ndiepiendenrt nif tire va lire of t iised .

1or all t.(st((i valirnvs of 7 tire rrrrltigri'l algoritirr uirnrvirguei to thle siilrtiirr ciiipi)ited tKN (Gaurs_

ian Elirminration to tire algpiiraic firiiiierr. Ilirwvevr, tr ill1 ciit in4 iif t ii algebraic s 11terIrII

resrultinig frorm tire ihiscret lzat joil of ire( uorli irrriris 1iroboiriiir rifenis rip t lii ijurst iii if li lri sr

Irition do~es tire riurigrin aigirrithr l cinvi\erg'e? Sirrir tire urirlsYstirr Is Ill iirnirlt lintei t lore is

a family of solirtioris U for virini tire resin;ri is srmall Indileed for 00I Ilie i-iriiliniir rillirricr -

10-
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N 'v

.; ___ ]I.01 .005 .003 .001 0

I( ii • 1 " .) .45 xl0 .69 x0 -  .89 10 -i .013 0

1 .3,9 C 10 .17 x10 - 1  .24 x10 -- 1  .28 x10 - ' .031 0
.• I 11 ,101 .25 X10 - 1  .33 X10 - ' .37 X10 1 .038 .035

• ,9 .040 .063 .080 .089 .095 .096

.15 .15 .18 .20 .21 .22 .22
1;I 1 I I I I'' ' '

T;1)l 5: Condition Number -- Problem TP-2 .?

0

estinate is .71 • 1) -1 whi ich is less than the unit roundoff of the VAX-11i780. Thus there is no

reas iiit ti expect that the s olutioni calculated by solving equation (15) is an adequate approximatior.

to the soluition if the continuous problerr. In the experimental runs that was indeed the case and

b)th algorithirn M(; and (;aussiaii Elimoination returned 0 for the solution. 0

Since for this probl c;i the error is not skewed as in problemn (fI,), it is not surprising to see

that the ratio) of iil rovellinnts R, are bourided above by the predicIed rate from Table 1. This

can be seen in Figure 3, fr (00I.

5.4 Turnhiing poilit lProvl)I( ti 2-

III tils sec t i (t i ()e s li Ih to
"u" (x,(C 0'''%)

I c))
2S

i5 discw e . l'he as, mit(o i " t (iltii I, ste Kr('i7la' is

u (.) I 0 (C .r -

Although ()n( sided dilfriing. in tihl. case L, is used to compli t t he sollition, the system of

equations that is solved is riot ill c,)nditi )ied As in Section 5.3 the LINIT ACK (tliatrt IR(CONI)

of the conditionii riutilecr . c (ot puited, . 'l'aTle 5

It. appears that Ilitc e(olitim iiumir is related to the hiindary data. For pro)lem (TP-i) the-.

discretizattori ist..s inforumat n frou ti(, iundary laier to (,tlm uite t,(.) at interior points flt'h

boundary datt for prolhrii (TI'.-) is wtll r,,prcs,,itei (no olimdtrv llvrs) ii the initritr.

From thle standiiin)t of li(, m lt igril atlgiritlm I again as th grids gct c()irser tili( condition

number irriprtvts. Al.,,(), ;ts for priililtoi) (/-t) thli ri, f cmiv ,,r 'nc, of thle alg rithin was

17
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Rate of Convergence
1.00...............................................................

0.90...............................................................

0.80...............................................................

0,70...............................................................

0.60 ......................................................... ...

0.50...............................................................

0.40...............................................................

0.30...............................................................
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0.10 ......................................................... ....
S

0.00 _ ______

1 6 11 16 21 26 31 36 1%

Iterat ion

Figure 3: R??. Problem TP-1, E .001
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independent of the value of E, and was identical to the rate pr.]icted in Section 3.1. In addition

R, was bounded above by the predicted rate. %

6 Comparison of Lhh and L2h

From a computational point of view one would like to choose for the coarse grid operator L 2 h the

tridiagonal operator analogous to Lh obtained by finite differences. This choice for L2h will be

denoted L.,". For now only the symmetric problem "..
1hI

-(pu') = f, p(X) Po > 0 (17)

with boundary conditions

u(0) u(i) 0%

is considered. Hlere p(x) is a smooth function. ,

Loixmia 6.1 The operator Lh is related to L2h by

L2h- Lfh + h -Aj Bj -Cj

where A 1, C. depend on p(x), p'(x) and p"(x), and Bj = Aj + C,.

Proof: Recall that the coefficients of iL2h are given in equations (10-12). In particular

1 2k0y2k- I 0

2 /hk- "

Expanding ONO

X4k-

4k 3 3
(2k I p(-- h) and

4k1 I) p( 4k 3h)

in Taylor series about the point xr (4k- 1)h and collecting terris vields

I ( 2k(12k- I

I1,((4" ' )h)p(('k 2 "')h)

2 ' 2

1* {'N

A"-'.,-;..
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%%

1 [p() + ± + + Cih3 ]p( p'( ) +.p"() C~h ]J
220(x, + ±" + [p(+ )- + -

[p (± ) + 4 (t ) + -p (- ) + C jh '] + [( ) - Jdo- ,( ) _ ~ 3  '. .,. .

1 p() 2 + h 2 [jp()p(±t) _ (p(±)) 2] + Dh 3  O

-22p(±x) + --p(± Eh3

444 p (-t ) + h m k.. ...

- fdh2Ak + h Ak -"

where Ak depends on p(x), p'(x) and p"(±).

A similar calculation yields

"tk = + h Ck.

In addition

?.. -w,,
f k = k + ik .

- fd +h 2A +fd +h 2 C

Ofd + h2

The error analysis in Section 3.1 shows that if [2h is not used then the coarse grid correction

02h will not equal W2h. Thus a bound on the eigenvalues of the eigenvalue problem y ?.-

fd

AL 2h= L2h- '

is needed.

Lemma 6.2 The eigenvalues A of

2LhV) ~h

satisfy

IA -11 < max jjj < Do.-mrin i""' "

Proof: By Lemnia 6.1

L2h L"J + h2{ -A Bj -Cj ],

thus

(A 1)(L hk, 0) = h2 ([ --A, Bi -C, )

20
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Summation by parts yields

2 h -A, B, -C~ i~
-h

2

-2h)

(?p,.J _ o + )

K 00

because of the smoothness of p and since 1 fd I p0 > 0. In addition, since L 2 is positive definite,

which implies

A-I > -Kh.

Therefore

A- 11 < Kh.

Recall from equation (9)

and if iL2h is used then

In the case where Lf a is used to solve

20h L2hW2h

the error is denoted 0.Now

p. 1 77~- 2h(W2h - th).

Since Range '2h and Nulispace ,h Lh are Lh-orthogonal (see rKamo85al )

I'Lh IL7h. t 2h(W2h - 0 2h)IILh. p

21
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Applying Lemmas 6.1 and 6.2,

1 'h(W2 ¢)h (LhI (W2h 02h), ' ( W2h02))

( <L (w=h - h)(W h)- tP ) ) L ) ' >""
L 2h /2-1 (L2h(W2h - 02h),'L2h 2h)) wh-(~)Lh~)

2

- (Fl 2h W2h, FL 2h W2 h)

where 
.

F -(I - 1/2(" f -'lj /2".)."i
/2 fd 1/2-

(Lh so) byLmm . ,h-

The eigenvalues ofLo2 (L h) 2h are the same as the eigenvalues of (Lfh- LM, so by Lemma 6.2

I L I,; /2 L I1/2 , 1 22 LI/2 L.1/2 \"

-(FL,2 W 2 h, F1W 2 h) < -(Kh2)2(L2 W2 h, 1 2
2 h) - -

2)
S(Kh2 )2(L2hW2h, W2h)

(Kh2)2 (LhlGhw2h, 12hw2h) .

Therefore

2Ih(Wmh- tbh)l[h 
< (gh2) 2 lI~hw hllh

and

hi" Lh - h L

Since JG ILh < 1,

00Iill' h 5 11174I h -- -t l O{L 
, .. , :

Finally, the rate using L 2h is

h2.
PI -

Recall the rat2e using L2h is .

22 
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P fd < p 4-Kh'.

Remark: Although the discussion in the previous section is restricted to symmiretric problems, the

same result extends to the general two point boundary value problemn

-(pu) -t- bu' - Cu = , p(x) PO > 0, C(x) > 0 (18)

since problem (18) can be rewritten .

- Pt) (9

where

g g(x), (20)

- g(x) -I (21)

f - ()~ (22)

The function q(rT) is 
4

* g~~x) ~ f b (X)-'()d}

Notei that p, c and] f are (lefinied si ricel

6.1 An Illuist rat ion

As an ifllist rat~w )1of Ire o1( t(f replacing Lmwith L"~ consider using for the smoother G in

* algorit hii MG orif sXkee e()f od (;aiiss-Sciderl snioothing. In other words

((;f '' , fr 1' 0 MlodI 2

and for I miod 2

Tbhis gilarantees that the errr ir lics (0?ipletely In ?I 1 ag C I. h InI o)ther words, the rl term is 0 since

for t t riioii 2
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yet

0 (Lh', I2hW2h),

1) 1 h12h U2 h).

In addition for points xi, with I' I mnod 2,

0 rx~, -Lhc x (Lhrfl. (L, I2h1.'2h)t

-~(Lhrj,i

wvhich Im~plies TI, V () Sinc C7 C zl 0: %

12hW2h A

for some Wv2h. If L2h Is used then one iteration of the algorithm results in completely solving the

problem.

For a numerical example problem (17) is solved wvith

P~x)

Thle right han skl( ide fis choi sen so that t he the true solution Is

t
irue 1,1) - 111 tlr ). %'.**

fd
As expected when L,"h Is used the algorithmn converges in] one step. 'when L 2 h Is used then

the observed rate of corivergence co)rresponds to the Kh 2 term of Section 6. Table 6 displays the

observed rate of convergenice .crsu~s hz for four different choices for the number of grids. The column

p(h) corresji oids to t lie olhserv, ed rate of coniivergenlce for i'achI value of h. 'The value of (I) is

I/) p(2h)
p (h)

Since the error in thle twoi grid ('ic ie ()(12 onew exjects t hit 1(11) 41 as 1i ()for twvo grids.

Indeedl this is I lie cast, 'I'li' reason~i why p( ) vares ithI thle niumber of gridls used Is that there are

'pollution' effects fromniirot solv in ecoarsl, grid equajl on xat v InI other words

whert, the 0 (1 2 ) term ('risitisto H ie error iziade by rnot, usingJ,.

2~1
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2 grids 3 grids 4 grids grids _-,

h p(h) 6(h) p(h) 6(h) p(h) 6(h) p(h) 6(h)
1/16 .50 x .27 x 10' .85 x 10- -
1/32 .12 x 10--  4.17 .62 x 10-1 4.35 .28 x 10-' 3.04 .86 x 10-1
1/64 70 Xb1o -  4.00 .15 X 10- 2  4.13 .65 x 10- 1 4.31 .29 x 10-1 3.01

1/127 .75 x 10 -  4.00 .387× 10-  3.95 .16 10- 4.06 .66 x 10' 4.33

Table 6: Rate using Lh,
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